Daphnane-Type Diterpenoids from the Flower Buds of Daphne genkwa

by Ling-Zhi Li^a), Pin-Yi Gao^a), Ying Peng^b), Li-Hui Wang^b), Jing-Yu Yang^b), Chun-Fu Wu^b), Yan Zhang^a), and Shao-Jiang Song^{*a})

^a) School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China (phone: +86-24-23986510; e-mail: songsj99@yahoo.com.cn)

^b) School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

Three new daphnane-type diterpenoids, genkwanines M-O (1-3, resp.), together with seven known daphnane-type diterpenoids, genkwanines D and H, genkwane F, genkwadaphnine, yuanhuatine, yuanhuafine, and yuanhuapine (4–10, resp.), were isolated from the flower buds of *Daphne genkwa* during a phytochemical investigation. The structures of the new compounds were elucidated on the basis of spectroscopic analyses, especially 2D-NMR spectra (HSQC, HMBC, and NOESY).

Introduction. – *Daphne genkwa* SIEB. et ZUCC., indigenous to the provinces along both the Yangtze River and the Yellow River of China, is a member of the family Thymelaeaceae. It is used as a folk medicine in China mainly for diuretic, antitussive, expectorant, and antitumors purposes. Previous studies on the chemical constituents of *Daphne genkwa* led to the isolation of a series of diverse compounds, including flavonoids, lignins, coumarins, caffeotannic acids, and diterpenoids [1-3]. Numerous species of the families Thymelaeaceae and Euphorbiaceae are known to contain toxic daphnane-type diterpene esters. So far, more than 80 daphnane-type diterpenoids were isolated from these families [4-7]. Those diterpenoids show a pleiotropic and partly overlapped pattern of biological activities, such as antitumor properties [6-9], potent antifertility activities [10-12], and, independently, neurotrophic [13] or irritant activities [14][15]. In the course of our search for biologically active compounds from plants, we were interested in the genus *Daphne* and began a study of the chemical components of *Daphne genkwa*.

In this article, we describe the isolation and structure elucidation of three new compounds of the polyfunctional daphnane type, named genkwanines $M-O^1$) (1-3, resp.), along with the seven known daphnane-type diterpenoids genkwanines D and H, genkwaine F, genkwadaphnin, yuanhuatine, yuanhuafine, and yuanhuapine (4-10, resp.) from the flower buds of *Daphne genkwa*.

Results and Discussion. – 1. *Isolation and Structure Elucidation*. Column chromatography of 95% EtOH extracts obtained from the flower buds of *Daphne genkwa* yielded the three new diterpenoids 1-3, along with seven known diterpenoids 4-10.

¹⁾ Arbitrary atom numbering; for systematic names, see *Exper. Part.*

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Genkwanine M (1) was obtained as a white amorphous powder. In the HR-ESI-MS, the $[M + Na]^+$ ion peak appeared at m/z 613.2407, and the molecular formula was determined as $C_{34}H_{38}O_9$. The IR spectrum showed absorptions at 3452 (OH), 1720 (C=O), and 1645 (C=C). In the ¹H-NMR spectrum (600 MHz, CDCl₃) of 1 (*Table 1*), typical signals of the diterpene unit can be identified. The presence of one tertiary Me group at $\delta(H)$ 1.84 (*s*, Me(17)) and two secondary Me groups at $\delta(H)$ 1.31 (*d*, J =6.6 Hz, Me(18)) and 1.05 (*d*, J = 6.6 Hz, Me(19)) were revealed. Four CH–O signals resonated at $\delta(H)$ 4.52 (*d*, J = 3.0 Hz, H–C(14)), 3.83 (*s*, H–C(5)), 3.86 (*d*, J = 4.6 Hz, H–C(3)), and 3.43 (*s*, H–C(7)). One CH₂ group showed up at $\delta(H)$ 5.09 (*d*, J =12.0 Hz, H–C(20)) and 4.02 (*d*, J = 12.0 Hz, H'–C(20)), suggesting it to be attached to an O-function. The olefinic H-atoms appeared to be at a terminal C=C bond ($\delta(H)$ 5.07 (*s*, H–C(16)) and 4.93 (*s*, H'–C(16))), while an overlapping *m* at $\delta(H)$ 1.79–1.59 (3 H) was assigned to CH₂(1) and H–C(2). The ¹H-NMR spectrum further showed *ms*

	1	2		
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
$H_{\beta}-C(1)$	1.79 - 1.80 (m)	34.3	1.98 - 2.00 (m)	36.1
$H_a - C(1)$	1.55 - 1.59(m)		1.86 - 1.88 (m)	
H-C(2)	1.65 - 1.67 (m)	36.7	1.83 - 1.85(m)	36.5
H-C(3)	3.86 (d, J = 4.6)	78.3	4.84 (d, J = 4.2)	82.9
C(4)		80.1		81.8
H-C(5)	3.83 (s)	71.3	4.13 <i>(s)</i>	74.7
C(6)		60.2		60.7
H-C(7)	3.43 (s)	64.2	3.44(s)	64.2
H-C(8)	3.05 (d, J = 3.0)	36.5	2.95 (d, J = 2.4)	36.6
C(9)		80.0		80.5
H - C(10)	2.77 (dd, J = 13.2, 5.4)	48.6	2.88 (dd, J = 13.2, 5.4)	48.8
H - C(11)	2.36 - 2.38(m)	35.3	2.46 - 2.51 (m)	35.5
$H_{\beta}-C(12)$	2.22 (dd, J = 13.8, 7.8)	35.8	2.16 (dd, J = 14.4, 7.8)	36.3
$H_a - C(12)$	1.80 (d, J = 13.8)		1.76 (d, J = 14.4)	
C(13)		84.3		84.6
H - C(14)	4.52 (d, J = 3.0)	82.5	4.49 (d, J = 2.4)	82.7
C(15)		146.5		146.6
$CH_{2}(16)$	5.07(s), 4.93(s)	111.2	5.03(s), 4.90(s)	111.4
Me(17)	1.84(s)	19.2	1.81(s)	19.4
Me(18)	1.31 (d, J = 6.6)	20.8	1.35 (d, J = 6.6)	21.2
Me(19)	1.05 (d, J = 6.6)	13.0	1.14 (d, J = 6.0)	13.6
$CH_{2}(20)$	5.09 (d, J = 12.0), 4.02 (d, J = 12.0)	68.4	3.86 (d, J = 12.0), 3.81 (d, J = 12.0)	66.3
C(1')		117.0		117.6
C(2')		136.1		136.4
H-C(3')	7.74 - 7.75(m)	126.1	7.75 - 7.76(m)	126.3
H-C(4')	7.34–7.35 <i>(m)</i>	127.9	7.37 - 7.38(m)	128.2
H-C(5')	7.34–7.35 <i>(m)</i>	129.2	7.37 - 7.38(m)	129.5
H-C(6')	7.34–7.35 <i>(m)</i>	127.9	7.37 - 7.38(m)	128.2
H-C(7')	7.74 - 7.75(m)	126.1	7.75 - 7.76(m)	126.3
C(1'')		166.6		168.8
C(2'')		129.8		130.0
H-C(3")	8.06 - 8.07 (m)	129.8	8.06 - 8.07 (m)	130.2
H-C(4")	7.43 - 7.45(m)	128.4	7.49 - 7.51(m)	128.9
H-C(5")	7.55 - 7.57(m)	133.2	7.62 - 7.64(m)	133.9
H-C(6")	7.43–7.57 (<i>m</i>)	128.4	7.49–7.51 (<i>m</i>)	128.9
H-C(7")	8.06-8.07 (<i>m</i>)	129.8	8.06-8.07 (<i>m</i>)	130.2

Table 1. ¹*H*- and ¹³*C*-*NMR Data* (600 and 150 MHz, resp.; CDCl₃) of **1** and **2**¹). δ in ppm, *J* in Hz.

of ten aromatic H-atoms at $\delta(H) 8.06 - 7.34$ indicating the presence of two Ph moieties, one of them belonging to the 9,13,14-orthobenzoate moiety and the other to a benzoyloxy group. The ¹³C-NMR spectrum (150 MHz, CDCl₃) of **1** (*Table 1*) exhibited 34 C-atom resonances, including three Me, four CH₂, and eighteen CH groups, and nine quaternary C-atoms, in which three Me groups ($\delta(C)$ 20.8 (C(18)), 19.2 (C(17)), and 13.0 (C(19))) and one terminal C=C bond ($\delta(C)$ 146.5 (C(15)) and 111.2 (C(16))) were distinguishable. Two O-bearing C-atoms at $\delta(C)$ 60.2 (C(6)) and 64.2 (C(7)) were shifted upfield compared with compounds **4**-**6** [6], suggesting the presence of a 6,7epoxy unit instead of a 6,7-dihydroxy pattern. This change can also be verified by the shifted H–C(7) at δ (H) 3.43. A quaternary C-atom at δ (C) 117.0 revealed the typical orthoester unit of daphnane-type diterpenoids. Analysis of the ¹H- and ¹³C-NMR and HSOC data helped us to allot the H- to their bonded C-atoms, and the HMBC experiment further demonstrated the planar structure of 1. In the HMBC spectrum (*Fig. 1*), the signals at $\delta(H)$ 5.09 and 4.02 (CH₂(20)) were correlated with the C(1")=O group at $\delta(C)$ 166.6; accordingly the ester linkage site of the benzovloxy group was deduced to be C(20). The signal at δ (C) 117.0 (quaternary C(1')) showing correlation with H-C(14) authenticated the presence of an orthoester group in **1**. Other main connectivities displayed in this spectrum were: H-C(7)/C(8), C(9), C(14), and C(20), and H-C(10)/C(4), C(5), and C(11). The configuration of 1 was asserted by the ¹H-NMR coupling constants and the correlations in its NOESY plot (Fig. 2). The vicinal coupling constant J(2,3) of 4.6 Hz suggested a *cis* relation between the protons H-C(2) and H-C(3), and indicated that H-C(2) and H-C(3) were both in the α configuration. Moreover, the significant NOESY cross-peaks H-C(2)/H-C(3), H-C(2)/H-C(10), and H-C(10)/H-C(5) permitted the assignment of H-C(5)and H–C(10) in the α -configuration. The absence of cross-peaks between $\delta(H)$ 2.77 (H–C(10)) and δ (H) 2.37 (H–C(11)) indicated that H–C(11) is in β -configuration. H-C(8) was correlated with H-C(11), H-C(7), and H-C(14), which showed that H-C(8), H-C(7), and H-C(14) are all in β -configuration; the configuration of H-C(7) was also supported by the s at $\delta(H)$ 3.43 (H-C(7)). If the H-C(7) was aoriented, the coupling constant J(7,8) would be expected to be *ca.* 10 Hz. Therefore, the structure of genkwanine M (1) was elucidated as $(2\beta, 3\beta, 6\alpha, 7\alpha)$ -3-deoxo-6,7-epoxy-1,2,5,6-tetrahydro-3,5-dihydroxyresiniferonol 20-benzoate 9,13,14-orthobenzoate¹).

Fig. 1. Key HMBC interactions $(\mathrm{H}\,{\rightarrow}\,\mathrm{C})$ for $1\!\!\!\! 1,\,2\!\!\!\! ,$ and $3\!\!\!\!$

Fig. 2. Key NOE correlations $(H \leftrightarrow H)$ of 1-3

Genkwanine N (2), a white amorphous powder, has a molecular formula $C_{34}H_{38}O_{9}$ as determined by HR-ESI-MS with the $[M + Na]^+$ ion peak at m/z 613.2406. The IR spectrum showed bands of OH (3441 cm^{-1}), ester C=O (1708 cm^{-1}), C=C (1645 cm⁻¹), aromatic C=C (1602 cm⁻¹), and C-O-C moieties (1178 cm⁻¹). The HR-MS of 2 and 1 provided the same molecular formula $C_{34}H_{38}O_9$, indicating that 2 and 1 are regioisomeric diterpene esters. The 1H- and 13C-NMR data (600 and 150 MHz, resp.; CDCl₃) of 2 (*Table 1*) closely resembled those of 1. They suggested the presence of the same daphnane-type skeleton, and the positions of the H- and C-atoms were almost identical in the NMR spectra; however, interestingly, the acylation position of the benzoyloxy linkages differed. As judged by visual inspection, the s at $\delta(H)$ 4.84 (d, J = 4.2 Hz, H - C(3)) was severely shifted downfield compared with that of 1, thus suggesting the benzoyloxy was attached to C(3), which was also confirmed by the correlation between the C(1")=O group at δ (C) 168.8 and the H-atom at δ (H) 4.84 (H–C(3)) in the HMBC spectrum (Fig. 1). A clearly distinguishable s at $\delta(C)$ 117.6 (quaternary C(1')) in the ¹³C-NMR spectrum suggested the presence of a 9,13,14orthobenzoate unit. Further, the NOE cross-peaks (H-C(2)/H-C(3), H-C(3)/H-C(5), and H-C(5)/H-C(10) were consistent with an α -configuration of these Hatoms, as shown in Fig. 2. Additionally, H-C(8) had strong NOE correlations with H-C(7) and H-C(14), as well as H-C(11), indicating that these H-atoms are in β configuration. The above-described spectral interpretations support the relative structure of compound 2 as $(2\beta_3\beta_5\beta_5\beta_6\alpha_7\alpha)$ -3-deoxo-6,7-epoxy-1,2,6,7-tetrahydro3,5-dihydroxyresiniferonol 3-benzoate 9,13,14-orthobenzoate¹). All H- and C-atom signals in the NMR spectra of 2 were completely assigned by the interpretation of its HSQC, HMBC, and NOESY data.

Genkwanine O(3), an optically active white amorphous powder, displayed the $[M + Na]^+$ ion peak at m/z 527.2258 in the HR-ESI-MS, in accord with the molecular formula $C_{27}H_{36}O_9$, indicating the presence of ten degrees of unsaturation. The IR spectrum of **3** indicated the presence of OH (3452 cm^{-1}), ester C=O (1711 cm^{-1}), C=C (1642, 1600, and 1580 cm⁻¹), and C-O-C moieties (1178 cm⁻¹). The basic analysis of the ¹H- and ¹³C-NMR spectra (600 and 150 MHz, resp.; CDCl₃; Table 2) implied that 3 had a similar diterpenoid core as that of 1. In the ¹H-NMR, the signals of three Me, one CH₂O, and four CH-O groups, two olefinic H-atoms at a terminal C=C bond as well as a group of aromatic H-atoms were distinguishable. In the ¹³C-NMR, compared with **1**, the C-atoms at $\delta(C)$ 73.5 (C(9)), 73.7 (C(13)), and 77.2 (C(14)) were severely upfield-shifted; this indicated the presence of a 9,13-dihydroxy-14-(acyloxy)daphnane, which was confirmed by the absence of a typical quaternary C-atom for a 9,13,14-orthoester moiety. The benzoyloxy group was located at C(14) by the data from the HMBC spectrum (*Fig. 1*), in which the C(1') = O group at $\delta(C)$ 167.1 showed correlations with signals at $\delta(H)$ 5.95 (s, H-C(14)) and 8.11-8.12 (H-C(3',7')). In the NOESY plot (Fig. 2), the strong correlations H-C(3)/H-C(5), H-C(5)/H-C(10), and H-C(10)/H-C(3) indicated that H-C(3), H-C(5), and H-C(10) are in α configuration. The coupling constant J(2,3) of **3** was determined as 10.2 Hz, indicating that H-C(2) and H-C(3) must be in a trans-diaxial orientation from which can be inferred the β -configuration of H–C(2). Moreover, H–C(2) had no NOE correlation with H-C(10), which confirmed the configuration of H-C(2). Thus, the structure of 3 was assigned as $(2\alpha, 3\beta, 5\beta, 6\alpha, 7\alpha)$ -3-deoxo-6,7-epoxy-1,2,6,7-tetrahydro-3,5-dihydroxvresiniferonol 14-benzoate.

Table 2. ¹*H*- and ¹³*C*-*NMR Data* (600 and 150 MHz, resp.; CDCl₃) of 3^1). δ in ppm, *J* in Hz.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
$H_{\beta}-C(1)$	1.81 - 1.84 (m)	35.1	H-C(14)	5.95 (s)	77.2
$H_a - C(1)$	1.32 - 1.35(m)				
H-C(2)	2.21 - 2.26 (m)	31.4	C(15)		144.9
H-C(3)	4.13 (d, J = 10.2)	75.5	$CH_{2}(16)$	5.17(s), 5.14(s)	114.0
C(4)		79.8	Me(17)	1.87(s)	18.9
H-C(5)	4.52(s)	76.7	Me(18)	1.00 (d, J = 6.6)	15.4
C(6)		64.5	Me(19)	0.96 (d, J = 7.2)	15.7
H-C(7)	3.24(s)	67.3	$CH_{2}(20)$	4.01 (d, J = 12.0), 3.28 (d, J = 12.0)	68.0
H-C(8)	3.05 (d, J = 3.0)	39.5	C(1')		167.1
C(9)		73.5	C(2')		130.0
H - C(10)	1.83 - 1.85 (m)	54.4	H-C(3')	8.11 - 8.12 (m)	129.9
H - C(11)	1.37 - 1.41 (m)	36.1	H-C(4')	7.44 - 7.46 (m)	128.5
$H_{\beta}-C(12)$	2.11 (t, J = 13.2)	33.9	H-C(5')	7.55 - 7.57 (m)	133.2
$H_a - C(12)$	1.59 (d, J = 13.2)		H-C(6')	7.44 - 7.46(m)	128.5
C(13)		73.7	H-C(7')	8.11-8.12 (<i>m</i>)	129.9

The known compounds were identified as genkwanine D (4), genkwanine H (5), genkwanine F (6), genkwadaphnin (7), yuanhuatine (8), yuanhuafine (9), and yuan-

huapine (10), by comparing their physico-chemical properties and NMR data with those reported in the literature [6][16][17].

Compared with compounds 1 and 2, compounds 4-6 bear a 6,7-dihydroxy unit instead of the 6,7-epoxy group. Compounds 7-10 all possess substituents at C(12), and an oxo group at C(3). Compound 3, sharing the core part of the daphnane-type skeleton, is structurally different from compounds 1, 2, and 4-10 due to the absence of the 9,13,14-orthobenzoate moiety. Also, the relative configuration at the stereogenic center C(2) of compound 3 is changed. Thus, compound 3 is the first member of daphnane-type diterpenoids with β -configuration of H-C(2).

This work was financially supported by the *National Natural Science Foundation of China* (Grant No. 30973868). We are grateful to Prof. *Qishi Sun*, Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, for the identification of the plant material.

Experimental Part

General. TLC: Precoated Si-gel-GF₂₅₄ plates (Qingdao Marine Chemical Factory, Qingdao, P. R. China). Column chromatography (CC): silica gel (SiO₂; 200–300 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China); Sephadex LH-20 (Greenherbs Science and Technology Development Co., Ltd., P. R. China); MCI gel (CHP20P, 75–150 µm; Mitsubishi Chemical Corporation, Japan); reversed-phase C_{18} silica gel (60–80 µm; Merck, Germany). Prep. reversed-phase HPLC: Hitachi (Japan Analytical Industry Co., Ltd.), column YMC ODS-A (5 µm; 250 × 10 mm; YMC, Japan). Optical rotations: Perkin-Elmer-214-MC polarimeter. IR Spectra: Bruker spectrometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker-ARX-600 spectrometer; at 600 (¹H) and 150 MHz (¹³C) in CDCl₃; δ in ppm, J in Hz. HR-ESI-MS: MicroTOF spectrometer (Bruker Daltonics); in m/z.

Plant Material. The flower buds (6 kg) of *Daphne genkwa* were collected in August 2006 from the Sichuan Mianyang area, P. R. China, and authenticated by Prof. *Qishi Sun*, Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University. A voucher specimen is kept in the Nature Products Laboratory of Shenyang Pharmaceutical University, Shenyang, P. R. China.

Extraction and Isolation. Air-dried flower buds of *Daphne genkwa* (6 kg) were extracted extensively with 95% EtOH (25 1) at r.t. for 20 d. The EtOH filtrate was then concentrated affording a brownish-dark crude extract (638 g) which was dissolved in H₂O (10 1) to form a suspension, and partitioned with CHCl₃ to afford a CHCl₃-soluble fraction (250 g). The latter fraction was subjected to CC (SiO₂, petroleum ether/AcOEt 100:1 \rightarrow 2:1): *Fractions A* – *F* (monitored by TLC). *Fr. D* (17 g) was further separated by CC (SiO₂, CHCl₃/MeOH 100:1 \rightarrow 2:1): *Frs. D1* – *D6. Fr. D2* (1 g) was purified by CC (*Sephadex LH-20*, MeOH) and then by CC (SiO₂, CHCl₃/MeOH 30:1): **6** (12 mg). *Frs. D4* (5 g) and *D5* (2 g) were each applied to CC (*MCI* gel) to give major fractions. Having removed of a large amount of chlorophyll, these major fractions from *Frs. D4* and *D5* were combined (TLC monitoring) and finally subjected to reversed-phase HPLC (MeOH/H₂O 70:30 \rightarrow 90:10): **1** (7 mg), **2** (17 mg), **4** (4 mg), **5** (5 mg), **7** (40 mg), **8** (35 mg), **9** (25 mg), and **10** (18 mg). The purification of *Fr. F* (22 g) was carried out by reversed-phase (CC *C₁₈* silica gel, MeOH/H₂O 60:40 \rightarrow 80:20): **3** (12 mg).

Genkwanine M (=rel-(2R,3aS,3bR,3cR,4aS,5R,5aS,6R,7R,8aS,8bS,9S,10aS)-4a-[(Benzoyloxy)-methyl]dodecahydro-7,9-dimethyl-10a-(1-methylethenyl)-2-phenyl-5aH-2,8b-epoxyoxireno[6,7]azule-no[5,4-e]-1,3-benzodioxole-5,5a,6-triol; **1**): White amorphous powder. IR (KBr): 3452, 1720, 1645. ¹H-and ¹³C-NMR: Table 1. HR-ESI-MS: 613.2407 ([M + Na]⁺, C₃₄H₃₈NaO⁺₃; calc. 613.2408).

Genkwanine N (= rel-(2R,3aS,3bR,3cR,4aS,5R,5aR,6R,7R,8aS,8bS,9S,10aS)-Dodecahydro-4a-(hydroxymethyl)-7,9-dimethyl-10a-(1-methylethenyl)-2-phenyl-5aH-2,8b-epoxyoxireno[6,7]azuleno[5,4-e]-1,3-benzodioxole-5,5a,6-triol 6-Benzoate; **2**): White amorphous powder. IR (KBr): 3441, 1708, 1645, 1602, 1178. ¹H- and ¹³C-NMR: *Table 1*. HR-ESI-MS: 613.2406 ([M + Na]⁺, C₃₄H₃₈NaO⁺₉; calc. 613.2408).

Genkwanine O (= rel-(1R,3R,4R,4aS,4bS,5aR,6S,6aR,7S,8R,9aS,9bR)-Dodecahydro-5a-(hydroxy-methyl)-1,8-dimethyl-3-(1-methylethenyl)benz[7,8]azuleno[5,6-b]oxirene-3,4,6,6a,7,9b-hexol 4-Benzoate;

3): White amorphous powder. $[\alpha]_{21}^{21} = -57.3$ (c = 1.2, CHCl₃). IR (KBr): 3452, 1711, 1642, 1600, 1580, 1178. ¹H- and ¹³C-NMR: *Table 2*. HR-ESI-MS: 527.2258 ($[M + Na]^+$, $C_{27}H_{36}NaO_9^+$; calc. 527.2252).

REFERENCES

- [1] Z. W. Xie, Acta Pharm. Sin. 1958, 6, 356.
- [2] H. Kai, T. Koine, M. Baba, T. Okuyama, Yakugaku Zasshi 2004, 124, 349.
- [3] L. Z. Li, S. J. Song, P. Y. Gao, Shenyang Yaoke Daxue Xuebao 2007, 24, 587.
- [4] W. D. He, M. Cik, G. Appendino, L. V. Puyvelde, J. E. Leysen, N. D. Kimpe, *Mini-Rev. Med. Chem.* 2002, 2, 185.
- [5] Y.-M. Zheng, W.-J. Zuo, M.-G. Sun, M. He, Q.-H. Wang, J.-H. Wang, X. Li, *Helv. Chim. Acta* 2009, 92, 1273.
- [6] Z.-J. Zhan, C.-Q. Fan, J. Ding, J.-M. Yue, Bioorg. Med. Chem. 2005, 13, 645.
- [7] S. Zhang, X. Li, F. Zhang, P. Yang, X. Gao, Q. Song, Bioorg. Med. Chem. 2006, 14, 3888.
- [8] R. Kasal, K.-H. Lee, H.-C. Huang, Phytochemistry 1981, 20, 2592.
- [9] I. H. Hall, R. Kasai, R. Y. Wu, K. Tagahara, K. H. Lee, J. Pharm. Sci. 1982, 71, 1263.
- [10] W. C. Wang, S. R. Shen, Reprod. Contracept. 1988, 8, 60.
- [11] C. R. Wang, B. N. Zhou, Reprod. Contracept. 1989, 9, 9.
- [12] Z. P. Gu, C. R. Wang, Z. Y. Liang, L. J. Lin, R. F. Lu, S. X. Zhao, B. N. Zhou, *Reprod. Contracept.* 1989, 9, 48.
- [13] W. D. He, M. Cik, A. Lesage, I. Van der Linden, N. De Kimpe, G. Appendino, J. Bracke, S. G. Mathenge, F. P. Mudida, J. E. Leysen, L. Van Puyvelde, J. Nat. Prod. 2000, 63, 1185.
- [14] D. Wu, B. Sorg, W. Adolf, E. H. Seip, E. Hecker, *Phytother. Res.* 1991, 5, 163.
- [15] D. Wu, B. Sorg, E. Hecker, *Phytother. Res.* 1994, *8*, 95.
- [16] B. H. Hu, H. Sha, C. R. Wang, D. F. Yu, X. C. Wu, X. G. Yu, Acta Chim. Sin. 1985, 43, 460.
- [17] B. H. Hu, H. Sha, Z. W. He, X. C. Wu, Acta Chim. Sin. 1986, 44, 843.

Received July 31, 2009